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Chapter 1 - Absolute Encoder Design
The absolute encoder needed to be able to accurately determine the current position of the
shaft. This required a number of design considerations, all of which are detailed in this
section, including the component selection, sensing circuit design and the absolute encoder
pattern used.

1.1 Component Selection & Sensing Circuit Design
For the sensing circuit, shown in Figure 1.1.1, consideration was given to the components
used in the design to meet project requirements. In the design, an infrared LED and infrared
phototransistor are placed next to each other in a black-out housing. These components
were aligned to measure reflectivity of the encoder plate placed next to them. This allowed
for the detection of black and white encoder patterns.

For the infrared LEDs, the TSAL6200 was the designated choice. This IR LED provides
high-power infrared emissions. A 68 ohm resistor was selected to limit the current through
the IR LED to under 100 mA, to meet the specifications in the datasheet. This choice
balanced the need for enough current to ensure light could be detected by the
phototransistor, while not putting too much current through and reducing the longevity of the
LED.

𝑟 = 𝑣/𝑖 = 5 𝑉 / 0. 075 𝐴 = 66. 67 Ω ≈ 68 Ω

For detecting reflected light, the LTR-3208E phototransistor was specified, and its
characteristics were considered when designing the circuit. The phototransistor was
configured in a voltage divider configuration. This configuration enabled the measurement of
the voltage drop across the phototransistor. A 100k ohm resistor was chosen for this voltage
divider circuit.

Figure 1.1.1 - Schematic of Sensor Configuration

3



The voltage drop across the phototransistor was measured by recording the voltage
between the phototransistor and resistor with respect to ground using the Arduino's
Analog-to-Digital Converter (ADC). The recorded range was approximately 0.25V to 0.5V,
which corresponded to digital values in the range of 50 to 100 when comparing the
reflectivity of black and white paper. As light levels changed, the voltage measured by the
ADC changed proportionally, allowing for accurate capture of changes in position.

1.2 Sensor Positioning
Positioning of the sensors is important to acquire accurate readings. Given the design
requirements for accuracy, it was decided that 5-bits of position data were required, and
therefore five rings on our Absolute Encoder. This requires five sensors positioned within the
system. Instead of positioning all five sensors next to each other on the encoder disk, we
opted for a strategic placement strategy. We placed three sensors at the top of the encoder
disk and positioned two sensors at the bottom. This arrangement allowed for several
advantages in our design:

By distributing the sensors across the top and bottom of the encoder disk, it was possible to
design the rings on the encoder disk to be slightly smaller. This optimised the use of the
available space means sensor readings are slightly more accurate, as rings placed closer to
the centre of the disc have a smaller circumference, and therefore more likely for a sensor of
the same size to make false readings.

The positioning of three sensors at the top and two at the bottom created a scenario where
the sensor housings could theoretically overlap. This design feature enabled us to better
control individual sensor alignment, ensuring that the sensors passed consistently over the
rings on the encoder disk.

1.3 Absolute Encoder Disk Design
The design of the encoder disk pattern was very important to achieve accurate sensor
readings. To achieve the most accurate readings possible, it was decided that grey code
would be used. Grey code was chosen for its property that only one bit changes at a time.
This simplifies detection as bits change less often, therefore there are larger sections of the
encoder that remain the same colour.

As mentioned in the previous section, it was decided that five rings were required on our
encoder to achieve the accuracy required. Therefore we used 5-bit grey code. As seen in
Figure 1.3.1, on the encoder disk, the outermost ring
held the least significant bit, while the innermost ring
contained the most significant bit. This design allows the
distinct bit sequences while ensuring that the innermost
ring, with its smaller circumference, features two large
segments; one black and one white. This means that the
least significant bit, which changes the most often, has
the widest segments due to the larger circumference.

A significant consideration was the placement of two
sensors at the bottom of the encoder. To obtain true
grey code readings, we introduced a 180 degree offset
for the corresponding rings. This offset allowed for
consistent and accurate grey code value readings,
aligning with the objectives of the project.

Figure 1.3.1 - Absolute Encoder Disk
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Chapter 2 - Absolute Encoder Performance

2.1 Signal Processing and Code Design
To process the signals from the phototransistor, we created an arduino program with the
input pins and their corresponding sensor numbers defined in the pre-setup. Additionally, for
use during functions, each sensor was given a boolean that would correspond to the colour
present on the wheel.

With robust sensor inputs, we realised that consistently checking for changes such as rising
edges was not needed. The first step for changing the readings into a number was creating
a function to convert the aforementioned booleans into the correct number. returnColour was
created, which required a sensor pin number, and a pointer to a boolean as inputs. The
value of the inputted pin was stored onto an integer using analogRead. Next, mentioned in
the circuit design, a high number
would result when white was present
and reflecting, and vice versa for
black. To prevent false readings, a
universal upper and lower boundary
were created, where if the signal
passed a certain boundary, the
boolean pointer would be assigned to
a new value, with high readings being
assigned true, i.e white, and low
readings false, i.e black. The purpose
of the dead zone was vital for
preventing slight outlier readings from
incorrectly switching the boolean
leading to a wrong number.

Figure 2.1.1 - Sensor Reading from a number change
However, it was found a universal boundary was too broad to encompass every
photoresistor's range of values. Variations in resistors, photoresistors, strength of infrared
LEDs, and small variations in the physical distances would lead to significant differences
when compounded. The solution was to create unique boundaries for each sensor. Each
time we wished to test the absolute encoder we would calibrate each sensor by seeing what
values they would read as white and black, and assigned boundaries approximately 15
above or below to encompass an average reading. When stored on an array with indexes
corresponding to their sensor number, the universal boundary could be negated, without the
need to add additional inputs to the function.

Figure 2.1.2 - Example of converting sensor readings to black or white
To return a position at any point in time, the function calculatePosition was created. It took no
inputs, instead running returnColour for all five sensors, then returning the value from the
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detectPosition function within itself. detectPosition, again with no inputs, converted the
booleans from grey code to binary, and from binary to decimal ranging from 0 to 31. This
number was then converted to angle in degrees.

Calculating the change in angle was straightforward once the encoder was returning
accurate numbers. Before each spin of the motor, the initial angle was saved. Once the
motor was finished turning, the final angle was saved. These two positions were passed into
the calcChange function. As per the requirements of the test, no angles larger than 90
degrees were to be tested. This allowed us to figure out the four conditional situations for
each change in angle which accounted for crossing the overflow point, and their
corresponding directions. ‘Change’ refers to the final angle minus the initial angle. For
example, if the change was negative, two situations are possible. Firstly, the change is less
than 90, and thus represents what truly occurred. The true change is saved as the absolute
of such, and the direction is set as anticlockwise. Alternatively, the change is above 90,
implying that the overflow point was crossed. Consequently, the direction is set to clockwise,
and true angle change is saved as the complementary angle. The same logic applies vice
versa.

2.2 Sensor Testing and Performance

Figure 2.2.1 - Errors across the ±45° runs.
For our final demonstration, we were asked to perform angles of ±45. During our display, we
had 1 outlying datum, out of 20. Shown above is a repeat of the experiment with identical
conditions. All values landed within the ±14° range required to achieve maximum marks. The
accuracy can be further proved by taking an average of the data points, as the shown data
for +45° averaged to -1.2, and for -45° to -0.45. This trend continues no matter the inputted
desired angle. The data points show a trend of being accurate but not precise, as seen by
the variation in ranges and order. An R2of
approximately 0.005 can be fitted with a trendline,
which shows there is insignificant evidence of drift,
or any pattern, to the errors for each run.

To ensure meaningful analysis, we computed the
absolute errors when calculating the average
values across various angles. Subsequently, we
visualised the data within a range of ±75° at 7.5°
intervals, but no discernible trend emerged. For
spins with non-zero angles, errors consistently fell
within the 4 to 8° range, while angles within the
±7.5° exhibited significantly higher accuracy.

Figure 2.2.2 - Average Absolute Errors across ±75°
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Chapter 3 - Quadrature Encoder Design

3.1 Sensing Circuit Design
The quadrature encoder circuit uses two infrared LED/phototransistor pairs as specified in
chapter 1, each pair placed side by side in an opaque case to avoid outside light leakage.
They work by the LED shining infrared light onto the disk, and the phototransistor picking up
the different amounts of reflected light returned by bouncing off either white or black paper.
The phototransistors are wired with a voltage divider to be sensitive to white with a 100kOhm
resistor in series between output and ground as shown in figure 1. This resistor value was
chosen after tests of multiple values showed 100kOhms resulted in the largest difference
between white and black readings. It was decided to have this value resistor for both
phototransistors as more fine tuning would have a disproportionate time cost for any
effectiveness gained. The LEDs are wired in series with a 68 Ohm resistor between each
LED and ground to achieve maximum brightness while avoiding excess current damaging
the LED, as calculated in chapter 1.

3.2 Disk Pattern Design and analysis
The disk pattern, shown on right, is 100mm in diameter and
consists of 32 segments, alternating between black and
white. The segments of the inner ring are a half segment
width out of line with the outer ring as a way to tell direction
by which change is detected first, as well as fit more data
for accuracy. The width of the segments is half that of the
absolute encoder, as it was found that this allowed the inner
ring to have the smallest width still detectable by the sensor,
where the absolute design was held back by having sensors
much closer to the middle of the disk where there is less
space.
The width of the segments in the smallest ring of the
absolute encoder was ~10mm, so the quadrature encoder
design was based on the knowledge that the absolute
encoder could pick up signals at that width.

Figure 3.2.1: Quadrature Encoder Disk

π × 𝐷 = 𝐶,  𝐶 ÷ 𝑛𝑜.  𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 = 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑤𝑖𝑑𝑡ℎ → π × (100 − 12) ÷ 32 ≈ 10𝑚𝑚 

3.3 Hardware Positioning
The quadrature encoder uses the same sensing circuit placement as the absolute encoder,
with only the outside two pairs used for measurement. These measure on opposite sides of
the disk, as the spacing of the matrix plate holes with the cases made it impossible to fit two
pairs one above the other. This means that each sensor is reading on opposite sides of the
disk, however this does not matter as unlike the quadrature encoder, the absolute encoder
pattern is the same whether upside down or not.
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Chapter 4 - Quadrature Encoder Design

4.1 Sensor Testing and Performance
The quadrature encoder utilised two sensors, each comprising an infrared LED and a
phototransistor enclosed within a sensor case. Sensor readings were obtained using the
Arduino package's analog read command, which provided integer values corresponding to
the phototransistor's light intensity readings. Initially, colour ranges were defined by a ±20
range around the values recorded for white and black, leading to suboptimal performance.

Issues stemmed from inconsistent sensor readings and significantly lower values attributed
to the design of the 32-component disk pattern, which did not fully cover the sensor case,
resulting in blended readings of black and white. To address this, a dynamic testing method
was implemented to identify the precise transition points from black to white. Although this
improved the accuracy for one sensor on one day, discrepancies persisted among the
sensors and different times of day, likely due to ambient light conditions, paper colour,
shadows, and slight manufacturing variations. Consequently, a daily calibration procedure
was established, involving the serial printing of raw analog values to the monitor and
subsequent adjustment of sensor reading boundaries. See figures 4.1.1 and 4.1.2 for details.

Figure 4.1.1 and 4.1.2: Serial Plot and Serial Monitor values of sensors zero and one as the
disk rotated.

The calibration process involved analysing the peaks and troughs in the figures,
representing black and white colours, respectively. Noting the similarity between the figures,
a single boundary condition was chosen to apply to both sensors.

4.2 Signal Processing and Code Design
To streamline operations and minimise complications, a simplified code design technique
was adopted, leveraging a method commonly used in motor encoders. By relying on the
offset of the encoder disk, direction calculation was executed, ensuring that any errors were
primarily attributed to hardware and connections rather than the code. This technique
involved polling the sensors, with sensor one peaking prior to sensor zero during clockwise
rotation, as depicted in Figure 4.1.1. The code was programmed to monitor sensor zero's
transition from black to white, subsequently checking the status of sensor one. If sensor one
indicated white, a clockwise rotation was confirmed; conversely, a black reading signified an
anticlockwise rotation.

To determine the motor speed, a counting method was implemented. This entailed
incrementing an integer count each time sensor zero changed its state, also achieved
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through polling. With 32 counts per revolution and the count incremented over a 5-second
interval, the RPM (Revolutions Per Minute) was calculated using a specific function at the
end of the 5-second period. The count was then reset to zero to prepare for the subsequent
interval.
Count to RPM equation:

𝑠𝑝𝑒𝑒𝑑 =  𝑐𝑜𝑢𝑛𝑡 × 12
32

4.3 Encoder Performance
The evaluation of the quadrature encoder's performance involved a comparison with the
motor encoder readings displayed in the Serial Monitor. The error was determined by the
formula:

𝑒𝑟𝑟𝑜𝑟 =  𝑜𝑝𝑡𝑖𝑐𝑎𝑙 𝑒𝑛𝑐𝑜𝑑𝑒𝑟 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 − 𝑚𝑜𝑡𝑜𝑟 𝑒𝑛𝑐𝑜𝑑𝑒𝑟 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 
To comprehensively assess the encoder's performance, accuracy and precision were
calculated across a range of selected RPM values. Two accuracy metrics were employed:
Accuracy % (1) was calculated as the Mean Error divided by the True Value, while Accuracy
% (2) was determined as the Mean Error divided by the Full Span, both expressed as
percentages.

Figure 4.3.1 illustrates a decrease in accuracy at higher speeds, attributed to the increased
likelihood of the optical encoder missing counts, resulting in higher errors. Despite a
favourable resolution of 0.375 RPM per count over a 5-second interval, the escalating speed
induced a proportional increase in error, leading to significant deviations.

Furthermore, repeatability analysis was conducted for the 200 RPM case, which represented
the majority of the tests performed. The calculated repeatability was determined to be 0.14%
RPM, indicative of highly consistent results, with minimal deviations observed except for
occasional outliers. A comparison of mean error for clockwise and anticlockwise tests
showed minimal change, therefore it was concluded that the direction was not a factor in
determining accuracy.

100 RPM 125 RPM 150 RPM 175 RPM 200 RPM

Accuracy % (1) 1.00 0.73 0.64 0.65 0.88

Accuracy % (2) 0.28 0.26 0.27 0.32 0.49

Figure 4.3.1: Full span accuracy over 100 RPM range
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Chapter 5 - Health & Safety by Design

The health and safety considerations of our optical encoder project are critical, necessitating
the minimization of risks to individuals' well-being and the implementation of robust operating
procedures. This section meticulously delineates safety aspects, particularly focusing on
electrical safety, infrared radiation, and mechanical hazards. Furthermore, we scrutinise the
applications of our encoder, emphasising potential risks associated with inaccuracies in
specific applications, such as a robotic arm.

Our project significantly prioritises electrical safety by utilising low-voltage DC for all
electronic components. This approach effectively mitigates electrical risks, and the
incorporation of circuit protection measures, including overcurrent and short circuit protection
in the power supply, further ensures secure operations, safeguarding both equipment and
personnel.

Given the inclusion of infrared LEDs, we have carefully considered the safety implications of
infrared radiation. While the risk is minimal, we have communicated the potential risks to
team members and instructed them to avoid direct eye exposure to infrared LEDs. To
address potential overheating issues, we have regulated the current supplied to the LEDs
below the specified forward current outlined in the data sheet.

Mitigating risks associated with moving components, such as the motor and rotating disk, is
crucial. To address this, we propose the implementation of an enclosure to house all moving
parts, preventing inadvertent contact that could lead to injuries. This enclosure also serves to
avert contact with electronic components, minimising the risks of electrical shock or burns.

Considering the intended application in a robotic arm, particular attention is given to
addressing potential errors in the absolute encoder. We recommend incorporating touch
sensors for redundancy to prevent over-rotation, regular calibration procedures, and a
secure holder for the sensors to prevent misalignment. These measures aim to prevent
errors that could result in hazardous arm positioning or damage, ensuring the safe and
accurate operation of the robotic arm.

The Engineering New Zealand Health and Safety practise note states that health and safety
by design is an intentional and deliberate process undertaken to consider what can
practicably be done in the design to eliminate hazards, reduce risks or otherwise minimise
the potential for harm throughout the product or asset lifecycle. This overarching philosophy
has been meticulously observed, ensuring an understanding of operations, thorough hazard
assessment, strategic design modifications to mitigate risks, clear communication of
remaining risks, and comprehensive documentation of decisions for assurance.
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