

MECHENG 706
Project 2 – Behaviour Control Robotics

Group 4
Eloise Beattie | Oliver Reedy | Otto Walker | Luke Hynds

1

Contents
1 Fire Sensing & Extinguishing System ... 2

1.1 Infrared Phototransistor Array Design .. 2

1.1.1 Switch Mode Phototransistors ... 2

1.1.2 Phototransistor Alignment ... 2

1.1.3 Verification Phototransistor .. 2

1.2 Servo Control of Array ... 2

1.2.1 Spinning Sequence ... 3

1.2.2 Rainbow Search .. 3

1.3 Fan Control .. 3

1.4 Adjustable Mounting .. 3

1.5 Finite State Machine .. 3

2 Obstacle Avoidance Subsystem ... 4

2.1 Design Requirements and Assumptions .. 4

2.2 Sensor Placement ... 4

2.3 Sensor Calibration ... 4

2.4 Obstacle Avoidance Logic.. 5

2.5 Results and Discussion ... 5

3 Behaviour Control .. 6

3.1 Code Architecture .. 6

3.2 Arbitrate ... 6

3.3 Commands .. 7

4 System Integration ... 8

4.1 Sensor polling .. 8

4.2 Electronics ... 8

4.3 Actuator Control ... 8

4.4 3D Modelling and 3D Printing .. 9

5 Project Management .. 10

5.1 Project Management Skills .. 10

5.2 Agile Project Development ... 10

5.3 Software Used ... 10

5.4 Contributions ... 11

2

1 Fire Sensing & Extinguishing System
One of the key subsystems of the firefighting robot was the fire detection and extinguishing

system. This subsystem consists of several key aspects. First is the phototransistor array,

consisting of three phototransistors. This is mounted onto the second subsystem, a servo

motor, which allows the array to be pointed in different directions for the purpose of searching

for the fire. Third, there is the alignment verification phototransistor, which allows the robot to

check if the fire is within extinguishing range. Lastly, there is the fan, used for extinguishing

the fire when in front of the robot.

1.1 Infrared Phototransistor Array Design
The core component of the fire detection system in the robot is the infrared phototransistor

array. This array consists of three IR phototransistors, each capable of detecting infrared

radiation emitted by flames, or in the case of the demonstration, a small incandescent light.

1.1.1 Switch Mode Phototransistors

The phototransistors were used in switch mode, giving a Boolean response on whether a fire

is detected in the direction it’s pointing, or not. Switch mode phototransistors were chosen for

their simplicity and allow the robot to gain an insight into which direction the fire is in, quite

reliably. The setup of the phototransistors is elaborated on in Section 4.

1.1.2 Phototransistor Alignment

An important design decision for the robot was how the array of phototransistors was to be

mounted. It was decided that mounting the 3 phototransistors 60 degrees apart, on top of a

servo controlled rotating platform was the best option, as shown in Figure 1.1. As the servo

has 180 degrees of movement, there would only be a small

blind spot behind the robot, which is scanned by rotating the

robot around its wheelbase. This was decided to be the best

traded off between accuracy and speed. The phototransistors

are mounted with blinders, which can also be seen in Figure

1.1, that allow them to have a narrow field of view, and subject

to less noise. This allows for detection using the unfiltered

output.

1.1.3 Verification Phototransistor

Only three of the four available phototransistors were used in the search array. This design

was implemented as it was decided that the phototransistors would be used in switch mode

as mentioned above. This meant that no distance data was available for location of the fires.

To mitigate this, a verification phototransistor was implemented, which pointed downwards

and would give a logical response if the robot was positioned point directly at a fire. If there

wasn’t to be a response from the verification phototransistor, the robot would know there was

an obstacle in front of it.

1.2 Servo Control of Array
As mentioned previously, the phototransistor array is mounted on a servo-controlled platform,

enabling dynamic adjustment of the array's orientation, while the robot is driving. The servo

control allows the robot to actively scan its surroundings until it detects a fire. This dynamic

control considerably increases the speed and accuracy of fire detection. In normal operation,

while no fire has been detected, the robot will cruise around, constantly scanning for fires.

Once a fire is detected, the robot will turn and face the fire straight on, and drive towards it.

Figure 1.1: Phototransistor Array Mount

3

The scanning stops and only the centre phototransistor is used for positioning while detection

is maintained.

1.2.1 Spinning Sequence

To further enhance the coverage and detection accuracy, the robot employs a spinning

sequence for the phototransistor array. As mentioned previously, the array is mounted on a

rotating platform that rotates back on forward covering a 300-degree span. At the beginning

of the run, the robot also spins around its wheelbase, allowing for full 360-degree detection.

This spinning sequence allows the robot to detect fires in all directions, eliminating blind spots

and ensuring comprehensive monitoring. The spinning mechanism is synchronised with the

gyroscopic data of the spinning robot.

1.2.2 Rainbow Search

If a fire was detected, and its position is lost before the fire is extinguished, the robot utilises a

"Rainbow Search" algorithm to prioritise areas with the highest likelihood of fire presence. This

algorithm scans the locations directly in front of the robot more carefully first, and then

increases the search angle. This allows for quick re-detection in most cases.

1.3 Fan Control
The extinguishing system of the robot is based on a fan, capable of directing concentrated

airflow towards the detected fire. Once it is confirmed that the fire is directly in front of the

robot, the fan is engaged until the fire is extinguished.

1.4 Adjustable Mounting
The phototransistor array, fan and verification

phototransistor are all mounted on an adjustable

mount, allowing for precise positioning and alignment.

This adjustable feature allowed for accurate tuning of

angles, including that of the fan, and most importantly

the verification phototransistor. The design of the

adjustable mount can be seen in figure 1.2. By fine-

tuning the angle and height of the array, we can

maximize the effectiveness of the fire detection

system, ensuring that the sensors can accurately detect the lights from various distances and

angles. This was a critical design feature for

the tuning of this subsystem.

1.5 Finite State Machine
The fire detection logic in our robot is setup

using a finite state machine. The states of the

FSM are defined by whether a fire is detected

or not, or whether a fire has previously been

detected. The FSM used for fire detection can

be seen in figure 1.3, and a more detailed

explanation of how finite state machines are

used and promised within the system is

covered in section 3.

Figure 1.2: Adjustable Mounting Structure

Figure 1.3: Fire Detection Finite State Machine

4

2 Obstacle Avoidance Subsystem
Obstacle avoidance is a critical component of our project, essential for preventing collisions

and ensuring optimal performance. The system is equipped with five range sensors,

including a sonar, two long-range infrared sensors, and two short-range infrared sensors.

The design focuses on strategic sensor placement and locomotion behaviours to ensure the

robot navigates without collisions.

2.1 Design Requirements and Assumptions
Collisions with obstacles such as walls significantly reduce the operational efficiency of the

robot. It is imperative to develop a reliable method for detecting and avoiding obstacles to

maintain high performance levels.

The scenarios anticipated involve the robot operating in environments with static and

dynamic obstacles. The primary requirement is the reliable detection of obstacles within the

robot's path to facilitate real-time avoidance. Given that the robot's movement is largely

forward or rotational, it was assumed that obstacles would primarily be encountered at the

front of the robot.

2.2 Sensor Placement
To ensure comprehensive coverage, the

sensor configuration was meticulously

planned. The sonar and two short-range IR

sensors were mounted on the front to span all

angles, ensuring that any obstacle directly in

the robot’s path would be detected. The two

long-range IR sensors were strategically

placed to cover potential blind spots that could

occur during lateral movements. This setup is

depicted in Figure 2.1, where the sonar is

depicted by the pink, short range IR sensors by

green and long range by blue. It is clear in the

figure where problem areas lie such as the

blind spots between the short-range IR

sensors and the sonar. The impacts of this

blind spot had to be minimised to avoid

collision. This was accomplished by tuning two parameters, the distance threshold and the

angle of sensor placement. The distance threshold was what confirmed whether an obstacle

was in the robot’s path, mentioned in more detail below, while the sensor angle is that angle

the short-range IR sensors make with the centre line of the robot. Tuning of this parameter

involved the prototyping of various mounts, with adjustments made in 5° increments until the

optimal configuration was achieved. The development of the 3D mounts is further detailed in

Part 4 – System Integration.

2.3 Sensor Calibration
The sensors were configured to provide a Boolean input: 'True' indicated the presence of an

obstacle within a predetermined proximity (distance threshold), and 'False' indicated a clear

path. This setup allowed for efficient debugging and tuning of the sensor ranges. Calibration

was a crucial step where the voltage readings from the sensors were converted into distance

Figure 2.1: Sensor Placement

5

measurements, allowing for a consistent

meaningful distance threshold opposed to

an obscure voltage threshold determined

independently for each sensor. This process

is shown in Figure 2.2. It was determined

unnecessary for post processing and

filtering of the sensor readings due to the

sensor readings being in switch mode,

where sensor noise only impacts the

system when hovering around the distance

threshold which does not occur for periods

long enough to impact the robot’s response,

and therefore means any filtering would be redundant.

2.4 Obstacle Avoidance Logic

The obstacle avoidance logic in our robot is orchestrated using a finite state machine (FSM),

which simplifies its implementation. As illustrated in Figure 3, sensor locations are

designated as FM, FR, FL, BR, and BL, corresponding to Front-Middle, Front-Right, Front-

Left, Back-Right, and Back-Left. Given the operational premise that the robot primarily

moves forward, the FSM is designed

to transition from obstacle avoidance

back to default when the front three

sensors are clear; otherwise, it

indicates the presence of an obstacle.

For general circular obstacles, the

robot typically sidesteps. However, if

sideways movement is blocked—as

detected by the rear sensors—or if all

front sensors are obstructed, the robot

assumes a wall is present, opting to

turn away rather than shift parallel to

the obstruction. This strategy provides

a robust response to a variety of

obstacle configurations.

2.5 Results and Discussion
The obstacle avoidance system demonstrated high efficacy, successfully navigating around

obstacles in about 90% of test scenarios, including during the robot demonstration. The

primary challenge impacting system performance involved sensor range limitations. At large

distances, sensors occasionally triggered false positives, causing the robot to manoeuvre

around non-existent obstacles. More critically, obstacles positioned too close to the sensors

resulted in false negatives, particularly problematic when the robot made sharp turns near an

obstacle. These issues underscore the need for enhancements in future designs. Future

improvements will focus on refining sensor placement and avoidance logic to more

effectively handle these edge cases. This iterative approach is expected to further increase

the reliability and accuracy of the obstacle detection system.

Figure 2.2: Sensor Calibration

Figure 2.3: Obstacle Avoidance FSM

6

3 Behaviour Control

3.1 Code Architecture
To preface how the differing commands of the robot were decided, the overarching code

architecture should be described for context. The main loop involves a Finite State Machine

responsible for initializing the robot, running the robot, and stopping the robot once both fires

are extinguished. Initialization involves zeroing the gyroscope and acquiring initial values for

all the sensors. The final stopped state simply halts the motors and exits any form of sensor

reading and printing. The bulk of the code and logic lies in the Running state.

Whilst the robot is in the Running state the following loop is undergone. A function

responsible for updating all the sensors is called, updating the internal variables holding the

values. A Boolean for whether a PID controller responsible for spinning the robot is updated

for use in some of the inner FSMs. These sensor variables, along with specific required

Booleans and pointers, are passed into the functions responsible for the obstacle avoidance,

and fire detection and extinguishing. As discussed in sections 1 and 2, these functions are

responsible for determining their own independent motor movements, fan commands, and

servo movements.

An additional function labelled

cruise control was also created.

Like fire detection/extinguishing

and obstacle avoidance, this

function is an FSM which outputs

its own desired motor movements.

Its purpose is to spin the robot

upon entering the Running state or

extinguishing a fire and drive

forwards when a fire has been

detected. The functions for Cruise

Control, Obstacle Avoidance, and

Fire Detection/Extinguishing were

all contained within their own class labelled behaviour_control.

Returning to the main running loop, after running each function the arbitrate function is

called, which contains the logic for behaviour prioritisation. Finally, the commands

determined from the arbitrate are used passed into polled servo control, fan control, and

motor control functions. Some additional logic is contained here which saves the previous

state of both the servo and the fan. If the fan is determined to have switched from the

FAN_ON state to the FAN_OFF state, an additional fire is determined to have been

extinguished. Once reaching 2 extinguished fires, the robot will switch from the Running

State to the Stopped State. Otherwise. If the servo is determined to have gone from any

other state into the STOP_SCAN state, a temporary block is placed on the phototransistors

preventing them from reading high.

3.2 Arbitrate
The arbitrate function was essential for determining the correct actuator commands at any

given time. The cruise function is the first, lowest priority, and ever-present command. The

flag for cruise is set to always be true, meaning if no command was provided by the fire

Figure 3.1: Cruise Control FSM Flow Chart

7

sensing or obstacle avoidance, then the robot will either be driving forwards, or performing a

full spin to search for a fire. The next lowest priority is the fire search.

The next, second highest priority is the obstacle avoidance, with the caveat that if the cruise

control is attempting to spin, then the obstacle avoidance will be skipped. The reasoning for

this was that it was told to us that the robot would be placed in a position where a full spin

would be possible without hitting any obstacles, and we wanted to ensure that the robot

would complete a spin and find the fire as quickly as possible without wasting time driving to

avoid obstacles.

Finally, and most crucially, was an additional and highest priority fire extinguish check. The

reason for this was to ensure that robot would not attempt to avoid an obstacle when that

obstacle potentially contained the fire. A check for if the fire_flag was high, the front sonar

was reading less than 20cm, and that either the fan command was FAN_ON, the

fire_command was STOP, or the fire_command was TARGET_FIRE. If all these conditions

were met, then it was determined that the robot was likely facing the fire, and instead of

attempting to avoid it, it should instead prioritize the commands of the fire sensing and

extinguishing, which should be to stop and turn the fan on.

Figure 3.2: Sensor to actuator control logic

3.3 Commands
As only the fire function had servo and fan commands, these were always performed

regardless of the fire_flag status. However, each flag would overwrite a global motion motor

command as the arbitrate function was checked, with the cruise command being defaulted

to.

Each command was saved as an Enum, unique to the relevant actuator. The fan command

consisted of a FAN_ON and FAN_OFF command. The servo contained a SCAN command,

a BABY_SCAN, and STOP_SCAN/EXTINGUISH. Although the last two were the same

action of having the servo be stationary, the use of 2 names was useful for debugging. The

motion commands consisted of a range of basic actions, containing movement and turning in

every direction. The behaviour control saved the actions for each actuator in their respective

Enum state for use in the functions to control the actuators, with a switch case to distinguish

between the actions and apply correct signals to the pins.

8

4 System Integration
4.1 Sensor polling
The sensors used for position data in the project were four infrared based Distance Measuring
Sensor Units, two GP2Y0A41SK0F with a range of 4-30cm, and two GP2Y0A21YK0F with a range
of 10-80cm, an ultrasonic ranging module HC-SR04 with a range of 2-400cm, and an ADXRS642
gyroscope with a range of up to 250 degrees/sec. The four Infrared sensors and the sonar were
polled at 50ms each, the sonar separately to the IRs. For fire detection, four SFH 300 FA
phototransistors were used, polled at 5ms.

4.2 Electronics
The fan required a higher current to run than could be provided by the Arduino, so it was
powered directly from the batteries (fig. 4.1.1).

All sensors connected directly to the Arduino board, with the exception of the phototransistors,
which required a simple voltage divider circuit (fig. 4.1.2).

All pins were connected to the Arduino shield (fig. 4.2)
which then interfaces with the Arduino itself. Pins used
were (A5, A12, A14, A15) for reading phototransistor
outputs, (48) for controlling the fan, (A7, A8, A9, A10) for
reading IR outputs, (40, 41) for connecting to the
ultrasonic sensor, (A11) for reading gyroscope output,
(10, 11) for Bluetooth connection, and (46, 47, 50, 51) for
controlling the mecanum wheels.

4.3 Actuator Control
The fan operates on a simple on-off principle in which
the function fanControl takes a simple on or off
command and subsequently writes high or low to the fan
pin.

Figure 4.1.1: Fan Circuit Diagram Figure 4.1.2: Phototransistor
Circuit Diagram

Figure 4.2: Pin Map

9

The servo utilises the arduino Servo library, allowing for the .write() command which

operates on a Servo type object, taking an angle in degrees as input and turning the servo to

that angle.

The mecanum wheels also employ the Servo library, using .writeMicroseconds() to send

custom PWM signals to the motor pins. To allow the wheels to operate in conjunction with

each other, a speed and direction is sent through the kinematics of the omnidirectional

wheels, then the resulting velocity for each wheel is saturated and sent through

writeMicroseconds() to each separate wheel.

4.4 3D Modelling and 3D Printing
All sensor mounts were 3D printed, as were the mounts for the servo and the breadboard.

The final robot design contained 15 separate 3D printed parts, all designed as best as

possible for manufacture, and all connecting via nut and bolt to the given mounting holes in

the metal robot body. The ideal angles of the sensor mounts were determined

experimentally, where weak versions of each likely angle were printed together then trialed,

with the optimal angle, when found, being reprinted with a smaller nozzle size and at a

slower rate to make a stronger product less prone to bending and deforming. This was done

to change angles instead of variable mounting points as it was found to be more resistant to

bumping, and the larger holes found in the variable prints were too much of a weak point.

Screw holes were printed with zero tolerances, allowing the thread of the screws to catch the

plastic and create a more secure mount.

Figure 4.3: Front IR Sensor
Mount

Figure 4.5: Phototransistor

Focusing Tube

Figure 4.4: Phototransistor Array Mount

10

5 Project Management
5.1 Project Management Skills
During the development of our autonomous fire sensing robot, we employed several key

project management skills learned in ENGGEN 303. One of the primary skills was the creation

of a detailed Work Breakdown Structure (WBS), which allowed us to break the project into

smaller, manageable tasks. This structure ensured clear task delegation and facilitated better

tracking of progress across various

stages of the project. Each team

member was assigned specific

responsibilities, ensuring accountability

and clarity in our collaborative efforts.

Another important project management

skill was effective time management.

We developed a project schedule using

a Gantt chart, which provided a visual

representation of our tasks and

deadlines. This helped us to try and stay on

track working towards the deadline.

5.2 Agile Project Development
Adopting Agile project development principles significantly enhanced our project management

process. This approach allowed us to respond flexibly to changes in design and incorporate

feedback from our learnings along the way. Each week we discussed the current sprint we

were working on, and what the next steps moving forward were. This allowed us to discuss

progress and address any obstacles. This environment meant our team was on the same page

and team members could share updates, seek assistance, and adjust plans as necessary,

where other people made critical changes.

The iterative nature of Agile development enabled us to integrate feedback continuously,

ensuring that our design improved, and progress wasn’t lost when changes were made by

other team members. By breaking the project into manageable sprints, we could test and

refine each component before moving on to the next. This approach not only improved the

overall quality of our robot but also ensured that our robot’s subsystems worked at each

checkpoint allowing them to be combined at the end.

5.3 Software Used
To manage our project efficiently, we

utilized several software tools. Miro

was instrumental for task breakdown

and tracking critical changes to the

design. Its intuitive interface allowed

us to create sections for different

project phases, and a central place for

all project information.

For version control and collaborative

development, we relied on GitHub.

This platform facilitated seamless
Figure 5: Miro Workflow

Figure 5.1: Gantt Chart

11

code sharing and version management, allowing multiple team members to work on different

aspects of the project simultaneously without conflicts.

5.4 Contributions
Eloise Beattie Worked on behaviour control logic, including coding and debugging of

class. Wrote the Obstacle Avoidance subsection of report. Assisted in
proof reading report.

Luke Hynds Wrote Fire Sensing/Extinguishing and project management, 3D
modelled structure additions and integrated electronic components.
Assisted in debugging code and report editing.

Otto Walker Wrote System Integration subsection of report. Worked on 3D design of
robot structure additions.

Oliver Reedy Worked on behaviour control logic, coding and debugging. Wrote the
Behaviour Control subsection of report. Assisted in proof reading
report.

