
Project 1 – Planar Worktable Control
MECHENG 306: Design of Sensing and Actuating Systems

Group 2
Eloise Beattie, Luke Hynds, Oliver Reedy & Otto Walker

August 25, 2023

​​Table of Contents
Introduction 2
1 Mechanical Platform Kinematics 3

1.1 Design choices and decisions 3
2 Implementation of Limit Switches 4

2.1 Operational Bounds 4
2.2 Datum Calibration 4

3 Closed Loop Control 6
3.1 Controller Design Choice 6
3.2 Implementation of classes 6

3.2.1 MotorsWithEncoders 6
3.2.2 CoordinateFinder 7

4 Time-Based Position Controller 8
4.1 Class Structure 8
4.2 Position Calculation 8

Conclusion 10
Critical reflection on the project 10
Contribution statement 10

1

Introduction

This report presents a comprehensive analysis of the design and programming decisions involved in
creating a planar worktable capable of accurately sketching both rectangles and circles of specified
dimensions, all while minimising errors and optimising speed. This report begins with highlighting a
critical aspect of this project, the calculation of the worktable kinematics, which played a pivotal role in
precisely determining the required motor rotations to achieve specified coordinates. The implementation
of limit switches was essential to safeguard the worktable and establish a common home position that are
elaborated on in subsequent sections along with the control strategy. This employed a combination of
closed-loop P controllers and time-based position control to effectively manage motor speed and rotation.
The following sections of this report elaborate on the details of our planar worktable design, control
mechanisms, and the methodologies adopted to achieve precise geometric sketching with maximum
efficiency and minimal error.

.

2

1 Mechanical Platform Kinematics

1.1 Design choices and decisions
Equations governing the worktable were given to the team along with the above diagram tracing the line
of the two belts that transmit motor power to the pen holder. As all design choices had already been made
by the platform manufacturer, the job of the team was now to interpret and work around the limitations of
the hardware. This involved deriving further equations, and determining how exactly the program would
interface with the platform.

Figure 1 - Gantry Coordinate System

1.2 Implementation
The platform is controlled by two motors, denoted by the red and blue lines in Figure 1. For the rest of
this section, the left motor denoted in red will be called A, and the right blue motor will be called B.

The equations given detail motor displacement:

∆𝐴 = ∆𝑋 + ∆𝑌
∆𝐵 = ∆𝑋 − ∆𝑌

As well as pen holder displacement:

∆𝑋 = ∆𝐴+∆𝐵
2

∆𝑌 = ∆𝐴−∆𝐵
2

Both in the cartesian plane. The motors contain 2 encoders each, so to accurately determine the
distance the motors were moving, the gear ratio of 171.19:1 was obtained from the motor datasheet,
and the amount of encoder counts in one revolution was decided as 24, as shown in the closed loop
control section, and the wheel that ran the belts attached to the motor was measured to be 14.26mm
in diameter, leading to the equation:

𝐸𝑛𝑐𝑅𝑎𝑡𝑖𝑜 = 171.79×24.0
14.26×π

Where EncRatio is the ratio of encoder counts to distance in millimetres, determined by dividing
the gear ratio and encoder counts in a circle by the circumference. This is because the encoders
are measured before the motor is geared down, to allow for a higher degree of accuracy. The
encoder ratio is then used to multiply a given distance from the motor displacement equations to turn
it into an amount of encoder counts that the controller can send to the motor.

3

2 Implementation of Limit Switches

Limit switches serve a dual purpose in our gantry system, contributing to both the system's operational
safety and its precision. This section explores the two implementations of our limit switches: Hardware
Protection and Datum Calibration.

2.1 Operational Bounds
To ensure that we don’t damage our gantry, we have created a safety system to stop the motors moving
the gantry out of system boundaries. To do this, we use limit switches positioned at the limits of the
gantry at X-, X+, Y- and Y+, which we refer to as Left, Right, Bottom and Top. These are shown in figure
2 below.

Figure 2 - Location of Limit Switches & System Bounds

The system works by constantly polling in the background checking if any of the limit switches are
pressed. Our system polls for state changes of the limit switches at 100Hz. Upon detecting the activation
of a limit switch, the system immediately stops both motors to avoid damage, and then moves the gantry
in the opposite direction to the switch that was pressed. The program then goes into an idle state,
requiring a new datum.

The main purpose of the safety system is to prevent movements that could result in mechanical strains or
stresses, such as belt rupture or motor overexertion. While our finished design should never be able to exit
system boundaries, this system was essential while designing our program. The knowledge that there was
a safeguard in place if something unforeseen were to occur, allowed us to test with confidence.

2.2 Datum Calibration
We need to ensure that our drawing is always in the same position within the system bounds. This needs
to be accurate and consistent to ensure the precision of the gantry’s movement. To do this we need to
define a datum, or reference point, which serves as the origin for all subsequent movements. Therefore
implementing a method to reliably and automatically establish this datum is the most important step in the
initialisation process.

4

Upon the start of the system's process is a homing sequence. The sequence orchestrates the movement of
the gantry until the datum is firmly established. This process involves several steps:

Figure 3 - Homing Function Flowchart

Leftward Movement: The homing sequence commences by moving the gantry to the left, a programmed
infinite distance, until the activation of the left limit switch. This action serves as a marker of the extreme
left boundary.

Rightward Adjustment: Subsequently, the gantry makes a controlled shift to the right, approximately
5mm, ensuring it is comfortably positioned within the system’s boundaries.

Downward Movement: The gantry then moves downward, once again with a programmed infinite
distance, until the activation of the bottom limit switch. This point signifies the lowest point within the
system’s boundary.

Upward Adjustment: A controlled upwards movement follows, shifting the gantry upward by about
5mm. This manoeuvre restores the system to a position well within the established operational bounds.

This predefined set of movements establishes the datum
point, which we use as the (0, 0) coordinate of our XY
coordinate system, as in figure 4. All movements made
after the homing function has run use this point as
reference to where it is within the system bounds.

In essence, the integration of limit switches not only
ensures operational safety but also creates a consistent
reference point. This combined functionality lays the
groundwork for precise and reliable gantry operations.

Figure 4 - Location of Datum on Worktable

5

3 Closed Loop Control

3.1 Controller Design Choice
The design choice of implementing a closed loop control system was decided after preliminary testing at
the beginning of the project. After comparing the accuracy and speed of both open loop (OL) and closed
loop (CL) controllers it was clear that the OL controller was too unreliable and a higher level of accuracy
was required than what the OL controller could provide. Therefore the following CL control system was
designed.

Figure 5 - PID Closed Loop Controller

As shown in the figure above, the decision was made to use encoder counts for the control system. This
was to make the system more integrated with the hardware and minimise the number of calculations
occurring every iteration. A complete PID controller was designed originally with the output velocity
constrained between 0 and 255, the range valid for a PWM motor.

𝑢(𝑡) = 𝐾
𝑃
𝑒(𝑡) + 𝐾

𝐼
0

𝑡

∫ 𝑒(𝑡) + 𝐾
𝐷

𝑑
𝑑𝑡 𝑒(𝑡) + 𝑜𝑓𝑓𝑠𝑒𝑡

Use of different controllers was trialled by setting some controller coefficients to 0 and monitoring the
effect. Due to the minimal effect of the integral and derivative controllers, only the proportional controller
was implemented in the final design, allowing for the code itself to be far simpler.

3.2 Implementation of classes
3.2.1 MotorsWithEncoders
The implementation used C++ methods and programming along with two classes, MotorsWithEncoders
and CoordinateFinder, which were used to fully implement this controller and CL system in tandem with
the worktable kinematics calculations. The left and right motors labelled A and B respectively were
created as instances of MotorsWithEncoders called motorA and motorB. This class implemented the
following methods; setVelocity, stopMotor, setDirection, goToPosition, and incrementCount along with
more getter and setter functions for variables.

6

The current position of each motor was found using the individual motor’s encoders which were wired to
interrupts on the Arduino. The motors used in this project implemented a two-channel Hall effect encoder
that outputs two channels; A and B. Upon a change in output A, the interrupt called the increment motor
count function which would add or subtract from the variable countPulses dependent on the direction of
the motor. As the outputs A and B were 90 degrees out of phase, the direction could be identified by
comparing outputs A and B and setting a direction boolean accordingly. Using only one encoder output
for interrupts was found to be more reliable and resulted in consistent results with minimal error.

Figure 6 - Encoder A and B Outputs from the Motor Datasheet

The P-Controller was implemented within the goToPosition method which took in the desired counts and
Kp. The error was calculated within this function using the following equation:

𝑒𝑟𝑟𝑜𝑟 = 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 − 𝑐𝑜𝑢𝑛𝑡𝑝𝑢𝑙𝑠𝑒

The set velocity function was used then to send power to the motor in the correct direction based on the
sign and value of the error and the proportional coefficient, Kp. Kp was variable as it was found a
different value was more effective in completing the circle to the square.

3.2.2 CoordinateFinder
The coordinate finder class was used to call the motor instances simultaneously and calculate their
respective desired encoder counts when given a coordinate with respect to the zero set in the bottom left
corner. Before the curve function was implemented, a ratio offset, as shown in Figure 5, was used to
synchronise the motors. While this was effective for straight lines, it was not as consistent for angles
which led to issues implementing the circle function. This resulted in the time-based curve function
explained in the following section. The original method included setting each coordinate within an array
and iterating through that array once the error was zero. This was unsuccessful for the circle task and
instead, a method where the target position was smoothly changed in order to create the desired paths and
shapes using the time-based calculation explained in section 4.

7

4 Time-Based Position Controller

4.1 Class Structure
A class called ’Curve’ was created in order to calculate the motion of the controller between coordinates.
The constructor takes the total time for the motion to complete in, the final position as a desired
coordinate to reach, and an initial position to calculate the length of the line. Once a new coordinate is
required, updateCurve is called which takes the same inputs as the constructor to reinitialise them to an
updated position. Two instances of this class are created at the beginning of the main code, one for the X
coordinates and one for the Y.

In order for the motion to be performed, the function that calculates the target position must be called
within a loop, whilst passing in the current time each loop. Additionally, as the calculation is time
sensitive, a separate function called beginCurve, which sets the initial time, must be called right as the
motion is about to begin.

4.2 Position Calculation
A simple way to demonstrate the functionality of this class is with a linear line.

Figure 7 - Position vs Duration

As shown in Figure 7, a simple mathematical function is used to convert the current time into a ratio
between the initial time and the final time. This value, now referred to as ‘x,’ is multiplied by the desired
length of the line. Since the closed-loop controller and kinematic maths works by passing in coordinates
to travel to, the ‘desired length of the line’ is calculated by subtracting the initial position of the curve’s
respective coordinate from the final targeted position. After the multiplication, the initial position is added
to correct for the position it travels from.

Of note, the final iteration of the code uses the theoretical motion to determine when it is complete.
Essentially, once the final time has been reached, and ‘x’ is 1, the curve will update and attempt to target
the next position. This is a change from the initial technique of only updating to the next desired position
once the encoders detect that they have reached the final position. Although the new method requires
finer tuning to ensure the motors are precisely at the desired positions, it allows for exact control of the
overall timing.

8

Once the ‘Curve’ class was confirmed to be performing the theoretical motion successfully, it became
clear that targeting lines which varied linearly through time would cause the corners to be curved as the
motor would not have time to slow down and speed up as it reached the corners. Instead of further tuning,
mathematical functions were used to convert the linear line into different types of curves that would
afford us precise control of how the pencil gantry would move between the points.

Sine Ease-Out : 𝑦 = 𝑠𝑖𝑛(𝑥π
2) {0 < 𝑥 < 1}

Quad Ease-In : 𝑦 = 2𝑥2 {0 < 𝑥 < 0. 5}

Quad Ease-Out : 𝑦 = 1 − (−2𝑥+2)2

2 {0. 5 < 𝑥 < 1}

Converting the path into these curves was as simple as applying the correct function to the value of ‘x,’
whilst keeping the rest of the positioning equation the same. Two major curves were tested; a Quad
Ease-In Ease-Out function, and a Sine Ease-Out function. In green is the original Linear Line function.
The Quad Ease-In Ease-Out function was tested
first with the prospect of ensuring that the corners
would be performed smoothly. However, an
analysis of the derivatives showed that although
the quad would allow for the smoothest starts and
stops, it would require the greatest speeds if
attempted in the same time frame as other
potential curves. It was found that the Sine
controller provides a nice balance. Additionally,
omitting the ease-in part of the function turned out
to save additional time as the physical constraints
of the motor combined with the P controller would
act as an ease-in as the pencil gantry’s physical
position caught up the desired line, whilst the
built-in Sine Ease-Out smoothed out the end of the
line allowing for 90-degree corners. Figure 8 - Curves Plotted Position vs Time

Two final functions were required for creating circles,
one for returning an X coordinate, and one for the Y
coordinate. For this, the ‘x’ value was multiplied by 2
Pi, passed into a sin/cos function, and multiplied by
the size of the desired radius. For the optimal route
across the board, the circle needed to begin from the
bottom and go counterclockwise, which meant that
the X position would use a sine function, and the Y
position would use a negative cosine function, with
the radius added on to ensure it would not begin from
the middle of the circle. The movement of the XY
positions is shown in the dual-axis graph.

Figure 9 - Waves Constructing a Circle

9

Conclusion

Critical reflection on the project
Our project's aim was to successfully complete both tasks, the rectangle and the circle, optimising time
and accuracy. We received a total error of zero millimetres during our display and completed the
demonstration within the fastest time echelon, hence receiving full credit. Our design choices paid off and
the result was an extremely robust and reliable system. If we were to repeat the project, some things to
improve would be code sharing, version control, and time management by investing less time into
ineffective and redundant features of the code, which would have resulted in a less stressful experience.

Contribution statement

I, Eloise Beattie, wrote the Closed Loop Control section of the report, worked on work-table kinematics,
building the coordinate finder and motor controller system (MotorsWithEncoders), and assisted with
integrating the final code.

I, Luke Hynds, wrote the Implementation of Limit Switches section of the report, worked on the
implementation of limit switches and homing as well as final tuning to complete the demonstration in
under 25s.

I, Oliver Reedy, wrote the Time-Based Position Controller report section, wrote the Time-Based Position
Controller (Curve class), as well as worked on code architecture, MotorsWithEncoders class, polling,
tuning, and main sketch implementation.

I, Otto Walker, wrote the Mechanical Platform Kinematics section of the report, assisted with writing and
bug fixing of classes and final sketch.

Figure 10 - Our Demonstration Drawing

10

